
On the Lattice Constant for Ix3 +3 + < 1 

By W. G. Spohn 

Abstract. There has been no published work on this intractable problem in the 
Geometry of Numbers since 1946. In 1944 and 1946 L. J. Mordell and H. Davenport 
gave bounds for the lattice constant in the Journal of the London Mathematical 
Society. The present attack stems from considering natural lattices with 9 points on 
the boundary of the region. The points of these lattices which are interior to the 
region are removed in the most efficient way by applying a convergent linear pro- 
gramming process. Apparently an infinite number of points must be removed in 
an infinite number of stages. A conjecture is made about the critical lattices for the 
region and the conjectured value .948754.... is given for the lattice constant. U 

1. Introduction. Let 

(1.1) X = l1U + t2V + 63W, Y= lU + 12V + f3W, Z = vU + t2V + t3W 

for real ti, i7i, tt with 

01 42 03 

(1.2) D = 77R 1 2 q3 5' O. 

t1 t2 t3 

Then when u, v, w take on all possible integer values the points (x, y, z) are said to 
generate a lattice A of determinant D with basis vectors (1, i71, P1), 2 7, ~2), and 

3 '173, 3 3). 

Let R be the region 

(1.3) 1+y'1+z'1!< 1. 

If a lattice A has no points in the interior of R except the origin, it is said to be 
R-admissible. Let 

(1.4) A(R) = g.l.b. [DI 
for all R-admissible lattices. A(R) is said to be the lattice constant for the region R 
(see Cassels [1]). It can then be stated that any lattice with IDI < A((R) has a. 
point in the interior of R in addition to the origin; in fact, at least two, since both 
the lattice and R are symmetric in the origin. An R-admissible lattice for which 
D = A((R) is called a critical lattice. Let A(R) = 1/M, then from homogeneity 
considerations it follows that the region S defined by 

(1.5) Ix' + y + zl < M 

has A/(S) = 1. 
An algebraic statement of this result would be the following: Let x, y, z be linear 

forms in u, v, w with real coefficients and determinant 1. Let m denote the greatest 
lower bound of the values assumed by IjX3 + y3 + z31 when u, v, w take all integral 
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values other than 0, 0, 0. Then m _ M and the value M is the smallest possible for 
all sets of forms satisfying the prescribed conditions. Estimates of M were given 
some time ago by Mordell [2] and Davenport [3], [4]. The best known bounds, given 
by Davenport, are 

(1.6) .815 < M < 1.157. 

(All decimal numbers in this report are truncated.) The equivalent bounds for 
A/(R) are 

(1.7) .864 < A/(R) < 1.226. 

The bound for A/(R) from below was obtained by applying Blichfeldt's extension of 
the Fundamental Theorem of the Geometry of Numbers to R. The bound from 
above is given by the specific form 

(1.8) x3 + y3 +z3 = u3 + 2v3 +w3-u2w 

or 

x = 1.000535u - .346873w, 

(1.9) y = 1.259920v, 

z = -.117148u + 1.013722w. 

The points (1.000535, 0, -.117148), (0, 1.259920, 0) and (-.346873, 0, 1.013722) 
in xyz-space form a basis of an R-admissible lattice of determinant D = 1.226697 
which has many points on the boundary of R, but none inside except (0, 0, 0). 

Let the norm of a lattice point (u, v, w) be defined as the maximum of the 
absolute values of the three integer coordinates. By restricting lattices to consist 
of points with bounded norm, an analog of A((R) was found on the IBM 7094 com- 
puter. Letting the bound approach infinity (250 was all that was practical) the 
following conjecture was achieved: 

(1.10) 111 = 1.054013, A(R) = .948754. 

2. Background. Mordell [5] exhibits the critical lattices for the region T: 

(2.1) ix3 + y31 < 1 

The boundary of T consists of the two curves 

(2.2) x3 +y 3 =1 

(2.3) x3 + y3 =- 

Let 

(2.4) x= 1u+ 2v, Y=f1+fl2v, 

generate a lattice with basis vectors (t1, 711), (42, fl2) where u and v are integers. In 
this case the critical lattices can be generated by forcing the lattice points (1, 0), 
(0, 1), (1, 1) and (1, -1) given in uv-coordinates to fall on the portion of the bound- 
ary given by (2.2). The basis is then determined by the equations 

(2.5) 01 + Y = &2 + fl2 
= (21 + t2) + (X1 + n2 

= (1- t2) + (X1 - 2)= 1 
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There are two real solutions. One can be derived from the other by permuting co- 
ordinates in the basis vectors. ID! = 1f1l12 - t2f1! gives the value of the lattice con- 
stant for the region T. We note that in (2.5) the permuting of numbers only changes 
the sign of the fourth expression. Thus if the roles of the basis vectors are inter- 
changed, the critical lattices are seen to be also generated by forcing the points 
(1, 0), (0, 1), (1, 1) and (-1, 1) to fall on (2.2), or by forcing the points (1, 0), (0, 1) 
and (1, 1) to fall on (2.2) while (1, -1) is forced to fall on (2.3). 

One might speculate about the above choice of four lattice points. They might 
be described as the "simplest" lattice points or the "closest" to the origin, their 
coordinates being restricted to -1, 0, and 1. There are eight points involved if we 
consider the image points in the origin, obtained by changing all signs. There is no 
loss in assuming that (1, 0) and (0, 1) lie on (2.2), rather than (-1, 0) or (0, -1), 
since this is equivalent to a change in sign of the basis vectors which is unimportant. 
However, once this selection is made geometry requires that (1, 1) be taken and not 
(-1, -1). The fourth point can be either (1, -1) or (-1, 1). 

3. The Generalization. This suggests a natural generalization to R given by 
formula (1.3). The two boundary surfaces are given by 

(3.1) x3+ y +z = 

(3.2) x3 + 3 + Z3 = -1. 

There are 27 points in 3-space having the coordinates -1, 0, and 1. After eliminating 
the origin and the "remote" points having no zero coordinate, there remain 18 of 
which half are image points in the origin. This gives 9 points to put on the surface 
(3.1) to determine the 9 coordinates of the basis (h,, qj, r,), (02, 712, p2), (3, 103)3). 

There is no loss in putting (1, 0, 0), (0, 1, 0) and (0, 0, 1) on the surface. Geometry 
forces the selection of (1, 1, 0), (1, 0, 1) and (0, 1, 1). The 3 remaining 
points (1, -1, 0), (1, 0, -1) and (0, -1, 1) can be on either surface (3.1) or (3.2), 
giving rise to 8 possible cases. This is more, incidentally, than the 6 equivalent 
systems obtained by permuting basis vectors. Two prototypes appear for the 8 
cases. The selection of (1, -1, 0), (1, 0, -1) and (0, -1, 1) for the last 3 points 
covers 6 cases; the selection of (-1, 1, 0), (1, 0, -1) and (0, -1, 1) covers 2 cases. 
The 9 points by the two selections will be referred to as type 1 and type 2, respec- 
tively. Solution of the 9 cubics in 9 unknowns analogous to (2.5) should, hopefully, 
give the critical lattices for R. These were solved on the 7094 computer using the 
Newton-Raphson method. Unhappily, points of the lattice fell inside R for lattices 
of both types. For instance, the value of X3 + y3 + Z3 at (1, 1, 1) was .934 for type 1 
and .601 for type 2. For type 1 the basis vectors were (1.000, -.101, -.116), 
(-.339, 1.020, -.286) and (-.346, -.041, 1.013) of determinant D = .935 and 
1/D = 1.068. The corresponding uvw-form was 

(3.3) u3 + V3 + w3- 2v- 2w-Vw2 + .934uvw.- 

For type 2, the basis vectors were (1.011, -.101, -.325), (-.325, 1.011, -.101) 
and (-.101, -.325, 1.011) with D = .899 and 1/D = 1.111. The corresponding; 
uvw-form was 

(3.4) u3 + v3 + W3-u2w-uv2-vw2 + .60luvw. 
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4. Groping Ahead. For type 1, some of the points of low norm that were inside 
R were (1, 1, 1), (1, -2, -2), (1, -1, -2), (1, 1, -1), (1, -9, 7), (2, 3, -2), 
(3, -6, -4) and (6, -7, 4). Incidentally, the points (0, 4, -3), (-3, 0, 4) and 
(-3, 4, 0) were on the surface (3.1), in addition to the 9 selected points. One 
wonders if there is not some efficient way of removing the points from the interior of 
R without letting the 9 selected points slip into R. 

Let (1, 1, 1) replace each of the selected points in turn and solve the system of 
equations. When (1, 1, 1) replaced (1, 0, 0), the point (1, 0, 0) fell inside R in the 
solution, so that, this replacement had to be rejected. The other eight replacements 
were acceptable. The best replacement was for (0, 1, 1) in that D had its smallest 
value .942. The replacement by (-1, -1, -1) was impossible. In this process the 
value at (-1, -1, 1) decreased from .934 to .911, showing that (-1, -1, 1) was 
driven more deeply into R. Next (-1, -1, 1) and (1, 1, -1) replace each of the 
preceding points in turn. Of the 18 cases the best was to let (-1, - 1, 1) replace 
(0, -1, 1). The value of D was .944. One must check that the replaced point 
(0, -1, 1) is not in R as well as the previously replaced point (0, 1, 1). The question 
arises whether this was the most efficient way to remove the two points (1, 1, 1) and 
(1, 1, - 1). Should they be removed in reverse order or must we replace the original 
points two at a time, requiring many combinations. Proceeding with one replace- 
ment at a time all points of norm 4 or less were cleared after about 8 stages. How- 
ever, it was not clear which point to remove at each stage. Do you remove the one of 
lowest norm or the one most deeply imbedded or the one that is most costly to re- 
move? In fact, with different strategies different results were achieved. Sometimes 
all possible replacements had to be rejected because they pulled previously replaced 
points into R. Then one would backtrack. This attack was abandoned. 

5. A New Viewpoint. In the preceding section when (1, 1, 1) was tested as the 
replacement for a point, say, (0, -1, 1), rather than think of the 9 points as being 
on the surface (3.1), 8 points of type 1 and (1, 1, 1), think of the value of x3 + y3 + z3 
at the 9 points of type 1 as being coordinates. The value for the first 8 is 1 and for the 
9th is 1.871. Thus (1, 1, 1, 1, 1, 1, 1, 1, 1.871) is a possible set of coordinates for 
which (1, 1, 1) is on (3.1). The totality of such coordinates will define a hypersurface 
in 9-dimensional space for positions of (1, 1, 1) on (3.1). One side of this surface 
corresponds to (1, 1, 1) having value > 1; all of these positions are acceptable. The 
other side corresponds to (1, 1, 1) having value < 1 and all of these must be re- 
jected. The hypersurface can be generated for the general lattice point (d, e, f). The 
rejected side may contain points for which the value is ? -1. These may be re- 
claimed by developing the surface for which (d, e, f) has the value -1 and accepting 
the side for which the value is ? -1 or what is the same thing, develop the surface 
for (- d, - e, -f) having value 1 and accepting the side for which the value is > 1. 
Hypersurfaces could also be developed for the value of D equal a constant. It was 
noticed that the hypersurfaces were strikingly linear and that by taking the excess 
over 1 as coordinates the problem would fit a linear programming framework. By 
using a convergence process, the assumption of linearity could be removed. 

Let (al, bi, ci) represent the uvw-coordinates of each of the 9 special lattice points 
of type 1 or type 2. Recall that the points of type 1 are (1, 0, 0), (0, 1, 0), (0, 0, 1), 
(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, -1, 0), (1, 0, -1) and (0, -1, 1). Type 2 differs only 
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in that the 7th point has coordinates (-1, 1, 0). Let 

t( = (a*21 + bi22 + Ci03)3 + (a*ol + biX2 + C0f3)3 

+ (aivi + biv2 + CiP3) -1. 

Then the t* > 0 constitute the coordinates in question. For a given initial set of co- 
ordinate values {t?0}, a basis (10, i1n0, A10), (U2, 7120, t2O), (30, 30?, N3) can be found by 
the Newton-Raphson method for the system (5.1). By taking partial derivatives and 
solving 9 sets of 9 linear equations in 9 unknowns, the values of (a3j/3ti)0, (a'qj/3ti)0, 
(aDj/3ti)0, (j = 1, 2, 3), can be found. Then two terms of the Taylor series for D 
given by (1.2) can be found about these initial values, namely, 

9 

(5.2) D D* + >(Dlati)?ti 

where 
9 

(5.3) D*= D?- > (DD/3ti)0ti0. 
*-~1 

Let 

(5.4) [d, e, f] = (dti + e62 + f6 )3 + (d1 + efl2 + fn3)3 
+ (dDi + eD2 + ft3 -1,3 

where d, e, f are integers. Then the condition that (d, e, f) is not an interior point of 
R is expressed by either 

(5.5) [d, e, f] _ 0 or [-d,-e,-f] > 0 . 

Just as above, one gets [d, e, f] as a linear function of the t* for the initial set {t*?0}. 
The problem can now be formulated as a linear programming one: minimize D, 
given in (5.2), subject to constraints ti > 0 and various constraints of the sort given 
in (5.5). For n points (d, e, f), one of the conditions in (5.5) would be selected for 
each point, requiring a total of 2n linear programming problems. Each of these 
problems must be treated as a convergence process. For an initial set {t*0?} the 
problem is solved. The resulting t's are designated {til} and the process repeats. 
The over-all problem is made tractable by a judicious choice of lattice points and the 
rapidity of convergence of the process. 

6. The Results. For types 1 and 2 the condition [-1, -1, -1] > 0 is geometri- 
cally impossible. For type 1, t*? = 0 and [1, 1, 1] > 0 one finds 

(6.1) D .935 + .134t, + .236t2 + .196t3 + .109t4 + .085t5 
+ .076t6 + .041t7 + .025t8 + .029t9 

and 

(6.2) [, 1, 1] -.065 - .944t, + .020t2 + .008t3 + .523t4 
+ .107t5 + .735t6 + .265t7 + .161t8 + .056t9. 

The result is D .9420, all til = 0, except t6l = .0895. The process converges to 
D = .9419, all t* = 0, except t6 = .0891. This much is the same as the initial stage 
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described in Section 4. For type 2, [1, 1, 1] > 0, the process yields D = .951, ti = 0, 
except t4 = .867. (The result is not unique because of the symmetries for type 2, 
where t4, t5, t6 enter symmetrically.) Since the value of D already exceeds the con- 
jectured value of A(R) in (1.10), type 2 will no longer be considered. No further 
cases were found geometrically impossible. Cases were rejected solely because D 
exceeded the conjectured value. 

The condition [1, 1, -1] _ 0 gave an acceptable D by itself, but in conjunction 
with [1, 1, 1] _ 0, proved unacceptable. The condition [-1, -1, 1] > 0 is acceptable, 
[1, 1, -1] > 0 is unacceptable. By finding only one of a pair [d, e, f] > , [-d, -e, 
-f] > 0 acceptable, one not only limits possibilities, but one can insist on the 
acceptable case as being required in all further investigations. Proceeding sys- 
tematically in this way it was found that to achieve an acceptable D the conditions 

6 )[1, 1, 1],1 [4, - 5, 3], [4, 3, - 3], I-1 2, 1],I [1, - 3, 2],1 
[-4, -4, 3], [-1, - 1,1], [1, -2, -2] > 0 

must be met, simultaneously. Linear programming was applied giving 

6.4) D= .948694, tl = t2 = t3 = t4 = 0, t = .000133, t6 = .026670, 
t7 =.069379, t8 = .097608, t1 = .172127. 

The first five of the constraints (6.3) had values equal to zero; the others were 
greater than zero. From the viewpoint of Section 4, the lattice could be generated 
by placing the 9 lattice points (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), 
(1, 1, 1), (4, -5, 3), (4, 3, -3), (-1, 2, 1) and (-1, -3, 2) on the surface (3.1). 
This lattice is the one of smallest determinant for which all lattice points of norm 5 
or less except (0, 0, 0) are not interior to f. In fact all points through norm 11 clear 
R. The points (2, - 12, 9) and (12, 7, -10) of norm 12 are interior to R. Incidentally, 

this case nears the limits of single-precision for the 7094 computer and in fact 
double-precision was used for the entire investigation. Instead of checking all lattice 
points (d, e, f) of norm _ N, say, to be sure they are not interior points of R, it was 
sufficient to satisfy the conditions 0 ? d ? N, -N < f < N and then give e integer 
values near the roots of certain obvious cubics. 

The next stage had 

[1,1, 1], [-1, 2,1], [4, -5,3], [11, 3, -12] = 0 

(6.5) D = .948749, t1 = t2 = 3 = t4 t5 = 0, t6 = .026306, 

t7 = .068642, 18=.099733, t = .174126. 

This gives the lattice of smallest determinant for which all points of norm 12 or less 
clear f. In fact all points through norm 23 clear R. It is interesting to note that 
(11, 3, -12) was not in trouble at the end of the first stage, but that in satisfying 
the conditions (6.3) plus the 4 pairs associated with (2, -12, 9) and (12, 7, -10), 
either the conjectured value was exceeded or (11, 3, -12) was in trouble. 

The third stage had 

(6.6) [1, 1,1], [11, 3, -12], [-11, 24, 22], [21, -27,17], [27, 10, -27] = 0 

D = .948754211. 

All points through norm 38 clear R. 
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The fourth stage had 

[1, 1, 1], [11, 31,-12], [-11, 24, 22], [21, -27, 17], 

(6.7) [49, 30, -40] = 0 
D = .948754397256. 

All points through norm 105 clear R. 
The fifth stage had 

[1, 1, 1], [11, 3, -12], [-11, 24, 22], [21, -27,17], 

(6.8) [106, 93, -78] = 0 
D = .948754397726. 

All points through norm 244 clear R. 
The sixth stage had 

[1, 1,1], [-11, 24, 22], [21, -27, 17], [106, 93, -78], 

[66, -245, 187] = 0 
(6.9) D = .948754399505, 1/D= 1.054013557692 

t1 = t2 = t3 = t4 = 0, t6 = .000157614028, t6 = .026325663739, 

t7= .068670755978, t8 = .099638725715, 4,t = .173887066166. 

The basis vectors were 

(1.000752724248, - .096532558854, - .110802150937) 

(6.10) (- .350065977785, 1.023026346629, - .302871084371) 

(-.361698926716, -.014773819857, 1.015531810412) . 

The corresponding uvw-form was 

u3 + V3 + W3 - 1.034335377989u2v - 1.049740555843u2 w 
2 (6.11) + .100106364953v w + .034335377989v2u + .049898169871w2u 

-1.073780701213w2v + .973516722231uvw . 

It is only known that points through norm 250 clear R for this case. 
The stages have to be viewed as arbitrary, yet there was a certain naturalness 

about them and the range of norms which they clear grows by a factor of the order 
of 2. However, a case could be made for accepting only one of the stages 3, 4, 5 since 
they differ in only one constraint with coefficients of like parity. The presence of 
these stages suggests that R is not boundedly reducible. 

Between the fifth and sixth stages all entries above differ in from the 8th to the 
12th decimal place, that is, each entry differs from the corresponding one by less 
than 10-7. Since the differences of entries between the stages decrease, essentially, 
geometrically taken as a whole, it is believed that many of the above digits will be 
preserved in the limit as the norm of cleared points goes to infinity. Arbitrarily 
picking six decimal digits gives rise to the main conjecture (1.10). A weaker from 
of this conjecture, namely, 

(6.12) M < 1.054013, A((R) ? .948754 
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is even more strongly supported by this investigation. Six decimal digits could also 
be picked for other ultimate quantities, in particular, for the basis vectors. Note, 
that the points (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), and (1, 1, 1) were on the bound- 
ary in every stage. It is more demanding to expect these to be points of the ultimate 
critical lattice, since ti, t2, t3, t4 can have the first decimal places zero without actually 
being zero. Nonetheless, a pattern is established in these few stages of these five 
points being on the boundary of R for every lattice, while the remaining four points 
are receding to infinity. This suggests that the critical lattice has just the 5 points 
(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0) and (1, 1, 1) on (3.1). Six critical lattices are to 
be expected, just as 6 lattices with the value of D given in (6.9) can be derived by 
permuting the coordinates of the basis vectors (6.10). 

It is hoped that these results will provide a basis for conjectures which can be 
attacked mathematically; however, the difficulty of this problem and its "infinite" 
nature may well put it outside the scope of rigorous mathematics. 

7. Reservations. The various stages occur in "holes," not at the frontier of the 
set of rejected "slabs." There is the possibility that a "hole" will be covered and 
that one would have to backtrack to make a fresh start giving rise to "discontinui- 
ties" in clearing higher and higher norms. In backtracking one may strike a stage 
that clears all the way to infinity; however, all elementary stages examined seemed 
to have the same density of problems that stage 1 had. If the "holes" kept getting 
covered, one might be forced all the way to the Davenport case (1.9). In this regard 
it is hard to conceive of a form similar to (6.11) with noninteger coefficients not tak- 
ing any values between -1 and +1 except the value 0 when (u, v, w) = (0, 0, 0). 
For stage 1 the surface [5, -6, 2] = 0 seems to bound the "hole." This is further 
constricted by [- 12, 18, -13] = 0. However, since the successive stages needed so 
little extra room, since backtracking was never required, and since the first four 
coordinates were never needed, it is felt that the closing of "holes" is not a matter 
for serious concern. 

Computer error or programming error is not considered to be a factor in the 
computation. FORTRAN subroutines "Simultaneous Linear Equation Solver" by 
Louis G. Kelly of the Applied Physics Laboratory as well as "Linear Programming" 
by John J. Jarvis of the Johns Hopkins University were used. These had been well 
checked out. The first two stages had been achieved independently of the linear 
programming, providing a check for that routine. Some points in stage 6 were also 
tested. All cases were run at least twice. 

The author was led naturally to the linear programrning approach from a graphic 
approach in two coordinates. There was no evidence of inflection points and practi- 
cally none of curvature. Furthermore, the convergence of the linear programming 
process strongly supports that a local minimum is achieved. The independence of 
the process from various initial coordinate settings suggests an absolute minimum. 
The impossibility of the cases [-1, -1, 0], [-1, 0, -1], [0, -1, -1], [-1, -1, -1] 
= 0 seemed plausible in comparison with the binary cubic and gained further sup- 
port from computer runs. Even if possible, the lattices would be so distorted that 
other difficulties would no doubt arise. This study was carried on near t1 = * 1tg 
= 0 by analogy to the binary cubic. The "monotoneity" of D can be lost for large 
t, but then "distortion" forces other basic lattice points to be inside R. 
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